
International Journal of Theoretical Physics, Vol. 43, Nos. 7/8, August 2004 (C© 2004)

An Unsharp Logic From Quantum Computation

Gianpiero Cattaneo,1 Maria Luisa Dalla Chiara,2

Roberto Giuntini,3 and Roberto Leporini1,4

Logical gates studied in quantum computation suggest a natural logical abstraction that
gives rise to a new form of unsharp quantum logic. We study the logical connectives
corresponding to the following gates: the Toffoli gate, the NOT and the

√
NOT (which

admit of natural physical models). This leads to a semantic characterization of a logic
that we call quantum computational logic (QCL).

KEY WORDS: quantum computation; quantum logic.

1. INTRODUCTION

The theory of quantum computation naturally suggests the semantic charac-
terization for a new form of quantum logic, that turns out to have some typical
unsharp features. According to this semantics, the meaning of a sentence is iden-
tified with a system of qubits, a vector belonging to a convenient Hilbert space,
whose dimension depends on the logical complexity of our sentence. At the same
time, the logical connectives are interpreted as particular logical gates.

2. QUANTUM LOGICAL GATES

We will first sum up some basic notions of quantum computation.
Consider the two-dimensional Hilbert space C

2, where any vector |ψ〉 is
represented by a pair of complex numbers. Let B = {|0〉, |1〉} be the orthonormal
basis for C

2 such that

|0〉 = (1, 0); |1〉 = (0, 1).

1 Dipartimento di Informatica, Sistemistica e Comunicazione, Università di Milano—Bicocca, Milano,
Italy.

2 Dipartimento di Filosofia, Università di Firenze, Firenze, Italy.
3 Dipartimento di Scienze Pedagogiche e Filosofiche, Università di Cagliari, Cagliari, Italy.
4 To whom correspondence should be addressed at Dipartimento di Informatica, Sistemistica e Comu-

nicazione, Università di Milano—Bicocca, Via Bicocca degli Arcimboldi 8, I-20126 Milano, Italy;
e-mail: leporini@disco.unimib.it.

1803

0020-7748/04/0800-1803/0 C© 2004 Springer Science+Business Media, Inc.

1804 Cattanco, Chiara, Giuntini, and Leporini

Definition 2.1. Qubit
A qubit is a unit vector |ψ〉 of the space C

2.

Hence, any qubit has the following form:

|ψ〉 = a0|0〉 + a1|1〉,
where a0, a1 ∈ C and |a0|2 + |a1|2 = 1.

We will use x , y, . . . as variables ranging over the set {0, 1}. At the same
time, |x〉, |y〉, . . . will range over the basis {|0〉, |1〉}. Furthermore, we will use the
following abbreviation: ⊗n

C
2 := C

2 ⊗ · · · ⊗ C
2︸ ︷︷ ︸

n-times
(where ⊗ represents the tensor

product).
The set of all vectors having the form |x1〉 ⊗ · · · ⊗ |xn〉 represents an or-

thonormal basis for ⊗n
C

2 (also called computational basis). We will also write
|x1, . . . , xn〉 instead of |x1〉 ⊗ · · · ⊗ |xn〉.

Definition 2.2. n-qubit system (or n-quregister)
An n-qubit system (or n-quregister) is a unit vector |ψ〉 in the product space ⊗n

C
2.

Apparently, the computational basis of ⊗n
C

2 can be labeled by binary strings
such as

| 011 . . . 10︸ ︷︷ ︸
n-times

〉.

Since any string |011 . . . 10〉︸ ︷︷ ︸
n-times

represents a natural number j ∈ [0, 2n − 1] in

binary notation, any unit vector of ⊗n
C

2 can be shortly expressed in the following
form:

2n−1∑
j=0

a j ‖ j〉〉,

where 0 ≤ j ≤ 2n − 1 and ‖ j〉〉 is the basis-element corresponding to j .
In the following we will call any vector that is either a qubit or an n-qubit

system a quregister. At the same time, |0〉 and |1〉 will be also called bits.
We will now introduce some examples of quantum logical gates. Generally, a

quantum logical gate can be described as a unitary operator, assuming arguments
and values in a product-Hilbert space ⊗n

C
2. First of all we will study the so called

Toffoli gate. It will be expedient to start by analysing the simplest case, where the
Hilbert space has the form

⊗3
C

2 = C
2 ⊗ C

2 ⊗ C
2.

In such a case, the Toffoli gate will transform the vectors of ⊗3
C

2 into vectors of
⊗3

C
2. In order to stress that our operator is defined on the product space ⊗3

C
2,

we will indicate it by T (1,1,1). Since we want to define a unitary operator, it will be

An Unsharp Logic From Quantum Computation 1805

sufficient to determine its behavior for the elements of the basis, having the form
|x〉 ⊗ |y〉 ⊗ |z〉 (where x , y, z ∈ {0, 1}).

Definition 2.3. The Toffoli gate T (1,1,1)

TheToffoli gate T (1,1,1) is the linear operator T (1,1,1) : ⊗3
C

2 � ⊗3
C

2 that is de-
fined for any element |x〉 ⊗ |y〉 ⊗ |z〉 of the basis as follows:

T (1,1,1)(|x〉 ⊗ |y〉 ⊗ |z〉) = |x〉 ⊗ |y〉 ⊗ |xy ⊕ z〉,
where ⊕ represents the sum modulo 2.

From an intuitive point of view, it seems quite natural to “see” the gate T (1,1,1)

as a kind of “truth-table” that transforms triples of zeros and of ones into triples of
zeros and of ones. The “table” we obtain is the following:

|0, 0, 0〉 � |0, 0, 0〉
|0, 0, 1〉 � |0, 0, 1〉
|0, 1, 0〉 � |0, 1, 0〉
|0, 1, 1〉 � |0, 1, 1〉
|1, 0, 0〉 � |1, 0, 0〉
|1, 0, 1〉 � |1, 0, 1〉
|1, 1, 0〉 � |1, 1, 1〉
|1, 1, 1〉 � |1, 1, 0〉

In the first six cases, T (1,1,1) behaves like the identity operator; in the last two cases,
instead, our gate transforms the last element of the triple into the opposite element
(0 is transformed into 1 and 1 is transformed into 0).

One can easily show that T (1,1,1) has been well defined for our aims: one
is dealing with an operator that is not only linear but also unitary. The matrix
representation of T (1,1,1) is the following:



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




1806 Cattanco, Chiara, Giuntini, and Leporini

By using T (1,1,1), we can introduce a convenient notion of conjunction. This
conjunction, which will be indicated by AND, is characterized as a function whose
arguments are pairs of vectors in C

2 and whose values are vectors of the product
space ⊗3

C
2.

Definition 2.4. AND
For any |ϕ〉 ∈ C

2 and any |ψ〉 ∈ C
2:

AND (|ϕ〉, |ψ〉) := T (1,1,1) (|ϕ〉 ⊗ |ψ〉 ⊗ |0〉) .

Let us check that AND represents a good generalization of the corresponding
classical truth-function. For the arguments |0〉 and |1〉 we obtain the following
“truth-table”:

(|0〉, |0〉) � T (1,1,1)(|0〉 ⊗ |0〉 ⊗ |0〉) = |0〉 ⊗ |0〉 ⊗ |0〉
(|0〉, |1〉) � T (1,1,1)(|0〉 ⊗ |1〉 ⊗ |0〉) = |0〉 ⊗ |1〉 ⊗ |0〉
(|1〉, |0〉) � T (1,1,1)(|1〉 ⊗ |0〉 ⊗ |0〉) = |1〉 ⊗ |0〉 ⊗ |0〉
(|1〉, |1〉) � T (1,1,1)(|1〉 ⊗ |1〉 ⊗ |0〉) = |1〉 ⊗ |1〉 ⊗ |1〉

One immediately realizes the difference with respect to the classical case.
The classical truth-table represents a typical irreversible transformation:

(0, 0) � 0

(0, 1) � 0

(1, 0) � 0

(1, 1) � 1

The arguments of the function determine the value, but not the other way
around. As is well known, irreversibility generally brings about dissipation of infor-
mation. Mathematically, however, any Boolean function f : {0, 1}n � {0, 1}m can
be transformed into a reversible function f̂ : {0, 1}n × {0, 1}m � {0, 1}n × {0, 1}m

in the following way:

∀u ∈ {0, 1}n ∀v ∈ {0, 1}m : f̂ ((u, v)) = (u, v ⊕ f (u)),

where ⊕ is the sum modulo 2 pointwise defined. The function that is obtained by
making reversible the irreversible classical “and” corresponds to the Toffoli gate.
The classical “and” is then recovered by fixing the third input bit to 0.

Accordingly, the three arguments (0, 0), (0, 1), (1, 0) turn out to correspond
to three distinct values, represented by the triples (0, 0, 0), (0, 1, 0), (1, 0, 0). The
price we have paid in order to obtain a reversible situation is the increasing of the
complexity of our Hilbert space. The function AND associates to pairs of arguments,

An Unsharp Logic From Quantum Computation 1807

belonging to the two-dimensional space C
2, values belonging to the space ⊗3

C
2

(whose dimension is 23).
All this happens in the simplest situation, when one is only dealing with

elements of the basis (in other words, with precise pieces of information). Let
us examine the case where the function AND is applied to arguments that are
superpositions of the basis-elements in the space C

2. Consider the following qubit
pair:

|ψ〉 = a0|0〉 + a1|1〉, |ϕ〉 = b0|0〉 + b1|1〉.
By applying the definitions of AND and of T (1,1,1), we obtain

AND(|ψ〉, |ϕ〉) = a1b1|1, 1, 1〉 + a1b0|1, 0, 0〉 + a0b1|0, 1, 0〉 + a0b0|0, 0, 0〉.
This result suggests a quite natural logical interpretation. The four basis-

elements that occur in the superposition-vector correspond to the four cases of the
truth-table for the classical conjunction:

(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 0).

However here, unlike the classical situation, each case is accompanied by a com-
plex number, which represents a characteristic quantum amplitude. By applying
the “Born rule” we will obtain the following interpretation: |a1b1|2 represents the
probability-value that both the qubit-arguments are equal to |1〉, and consequently
their conjunction is |1〉. The other three cases admit a similar interpretation.

The logical gate AND refers to a very special situation, characterized by a
Hilbert space having the form ⊗3

C
2. However, our procedure can be easily gen-

eralized. The Toffoli gate can be defined in any Hilbert space having the form

(⊗n
C

2) ⊗ (⊗m
C

2) ⊗ C
2(= ⊗n+m+1

C
2).

Definition 2.5. The Toffoli gate T (n,m,1)

The Toffoli gate T (n,m,1) is the linear operator

T (n,m,1) : (⊗n
C

2) ⊗ (⊗m
C

2) ⊗ C
2 � (⊗n

C
2) ⊗ (⊗m

C
2) ⊗ C

2,

that is defined for any element |x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z〉 of the computa-
tional basis of ⊗n+m+1

C
2 as follows:

T (n,m,1)(|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉 ⊗ |z〉) = |x1, . . . , xn〉
⊗|y1, . . . , ym〉 ⊗ |xn ym ⊕ z〉,

where ⊕ represents the sum modulo 2.

On this basis one can immediately generalize our definition of AND.

Definition 2.6. AND

1808 Cattanco, Chiara, Giuntini, and Leporini

For any |ϕ〉 ∈ ⊗n
C

2 and any |ψ〉 ∈ ⊗m
C

2:

AND (|ϕ〉, |ψ〉) := T (n,m,1) (|ϕ〉 ⊗ |ψ〉 ⊗ |0〉) .

How to deal in this context with the concept of negation? A characteristic
of quantum computation is the possibility of defining a plurality of negation-
operations: some of them represent good generalizations of the classical negation.
We will first consider a function NOT that simply inverts the value of the last
elements of any basis-vector. Thus, if |x1, . . . , xn〉 is any vector of the computa-
tional basis of ⊗n

C
2, the result of the application of NOT to |x1, . . . , xn〉 will be

|x1, . . . , 1 − xn〉.
Consider first the simplest case, concerning the negation of a single qubit. In

such a case, the function NOT will be a unary function assuming arguments in the
space C

2 and values in the space C
2.

Definition 2.7. NOT(1)

For any |ϕ〉 = a0|0〉 + a1|1〉 ∈ C
2:

NOT(1) (|ϕ〉) := a1|0〉 + a0|1〉.
One can immediately check that NOT represents a good generalization of the

classical truth-table. Consider the basis-elements |0〉 e |1〉. In such a case we will
obtain

NOT(1)(|1〉) = |0〉;
NOT(1)(|0〉) = |1〉.

The quantum logical gate NOT(1) can be easily generalized in the following way.

Definition 2.8. NOT(n)

NOT(n) is the map

NOT(n) : ⊗n
C

2 � ⊗n
C

2

s.t. for any |ψ〉 = ∑2n−1
j=0 a j |x j1 , . . . , x jn 〉 ∈ ⊗n

C
2:

NOT(|ψ〉) :=
2n−1∑
j=0

a j |x j1 , . . . , x jn−1 , 1 − x jn 〉

The matrix corresponding to NOT(1) will be(
0 1

1 0

)

An Unsharp Logic From Quantum Computation 1809

The matrix corresponding to NOT(n) will be the following 2n × 2n matrix:


0 1 0 0 · · · 0

1 0 0 0 · · · 0

0 0 0 1 0 · · 0

0 0 1 0 0 · · 0

· · · · · · · ·
· · · · · · · ·
0 · · · 0 0 0 1

0 · · · 0 0 1 0




We will omit the index n in NOT(n) if no confusion is possible.
Finally, how to introduce a reasonable disjunction? A gate OR can be naturally

defined in terms of AND and NOT via de Morgan.

Definition 2.9. OR
For any |ϕ〉 ∈ ⊗n

C
2 and |ψ〉 ∈ ⊗m

C
2:

OR(|ϕ〉, |ψ〉) = NOT (AND (NOT(|ϕ〉), NOT(|ψ〉))) .

The quantum logical gates we have considered so far are, in a sense, “semi-
classical.” A quantum logical behavior only emerges in the case where our gates are
applied to superpositions. When restricted to classical registers, our gates turn out
to behave as classical truth-functions. We will now investigate genuine quantum
gates that may transform classical registers into quregisters that are superpositions.

One of the most significant genuine quantum gates is the square root of the
negation NOT, which will be indicated by

√
NOT. As suggested by the name, the

characteristic property of the gate
√
NOT is the following: for any quregister |ψ〉,

√
NOT(

√
NOT(|ψ〉) = NOT(|ψ〉).

In other words: applying twice the square root of the negation “means”
negating.

Interestingly enough, the gate
√
NOT has some interesting physical models

(and implementations). As an example, consider an idealized atom with a single
electron and two energy levels: a ground state (identified with |0〉) and an excited
state (identified with |1〉). By shining a pulse of light of appropriate intensity,
duration, and wavelength, it is possible to force the electron to change the energy
level. As a consequence, the state (bit) |0〉 is transformed into the state (bit) |1〉,
and vice versa:

|0〉 � |1〉; |1〉 � |0〉.

1810 Cattanco, Chiara, Giuntini, and Leporini

We have obtained a typical physical model for the gate NOT. Now, by using a
light pulse of half the duration as the one needed to perform the NOT operation, we
effect a half-flip between the two logical states. The state of the atom after the half
pulse is neither |0〉 nor |1〉, but rather a superposition of both states. As observed
by Deutsch et al. (2000):

Logicians are now entitled to propose a new logical operation
√
NOT.

Why? Because a faithful physical model for it exists in nature.

Let us now give the mathematical definition of
√
NOT. We will first consider

the simplest case, which refers to the space C
2.

Definition 2.10.
√
NOT

(1)

√
NOT

(1)
is the map

√
NOT

(1)
: C

2 → C
2

such that for any |ψ〉 =: a0|0〉 + a1|1〉:
√
NOT

(1)
(|ψ〉) := 1

2
[(1 + i)a0 + (1 − i)a1] |0〉 + 1

2
[(1 − i)a0 + (1 + i)a1] |1〉,

where i is the imaginary unit.

It turns out that the matrix associated to
√
NOT

(1)
is


1

2
+ i

2

1

2
− i

2

1

2
− i

2

1

2
+ i

2




Thus,
√
NOT

(1)
transforms the two bits |0〉 and |1〉 into the superposition states

1
2 (1 + i)|0〉 + 1

2 (1 − i)|1〉 and 1
2 (1 − i)|0〉 + 1

2 (1 + i)|1〉, respectively.

The quantum logical gate
√
NOT

(1)
can be easily generalized in the following

way.

Definition 2.11.
√
NOT

(n)

√
NOT

(n)
is the map

√
NOT

(n)
: ⊗n

C
2 � ⊗n

C
2

such that for any |ψ〉 = ∑2n−1
j=0 a j |x j1 , . . . , x jn 〉 ∈ ⊗n

C
2:

√
NOT

(n)
(|ψ〉) :=

2n−1∑
j=0

a j |x j1 , . . . , x jn−1〉 ⊗
(

1 + i

2
|x jn 〉 + 1 − i

2
|1 − x jn 〉

)
.

An Unsharp Logic From Quantum Computation 1811

It is easy to see that for any n,
√
NOT

(n)
is a unitary operator such that

√
NOT

(n)√
NOT

(n) = NOT(n).

The matrix associated to the quantum logical gate
√
NOT is the (2n) × (2n) matrix

of the form

1

2




1 + i 1 − i · · · · · · ·
1 − i 1 + 1 · · · · · · ·

· · 1 + i 1 − i · · · · ·
· · 1 − i 1 + i · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · 1 + i 1 − i

· · · · · · · 1 − 1 1 + i




We will omit the index n in
√
NOT

(n)
if no confusion is possible.

Theorem 2.1. For any n, m the following properties hold:

(i) T (n,m,1)
√
NOT

(n+m+1) = √
NOT

(n+m+1)
T (n,m,1);

(ii)
√
NOT

(n)
NOT(n) = NOT(n)

√
NOT

(n)
.

3. THE PROBABILISTIC CONTENT OF THE QUANTUM
LOGICAL GATES

For any quregister one can define a natural probability-value, which will play
an important role in our quantum computational semantics.

Suppose we have a vector

|ϕ〉 =
2n−1∑
j=0

a j ‖ j〉〉 ∈ ⊗n
C

2.

Let us first define two particular sets of coefficients that occur in the superposition-
vector ϕ:

C+|ϕ〉 = {a j : ‖ j〉〉 = {x j1 , . . . , x jn−1 , 1}},

C−|ϕ〉 = {a j : ‖ j〉〉 = |x j1 , . . . , x jn−1 , 0〉}.
Clearly, the elements of C+|ϕ〉 (C−|ϕ〉) represent the amplitudes associated

to the different vector-basis of ⊗n
C

2 ending with 1 (0, respectively). On this basis,

1812 Cattanco, Chiara, Giuntini, and Leporini

we can now define the probability-value of any vector having length less than or
equal to 1.

Definition 3.12. The probability-value of a vector
Let |ψ〉 = ∑2n−1

j=0 a j ‖ j〉〉 be any vector of ⊗n
C

2 such that
∑2n−1

j=0 |a j |2 = 1. Then
the probability-value of |ψ〉 is defined as follows:

Prob(|ψ〉) :=
∑

a j ∈C+|ψ〉
|a j |2.

According to our definition, in order to calculate the probability-value of a
quregister |ψ〉 one has to perform the following operations:

• Consider all the amplitudes a j that are associated to a basis-element ending
with 1;

• Take the squared modules |a j |2 of all these complex numbers a j ;
• Sum all the real numbers |a j |2.

One can prove:

Lemma 3.2.

(i) If |ψ〉 = ∑2n−1
j=0 a j ‖ j〉〉 is any unit vector of ⊗n

C
2, then∑

a j ∈C+|ψ〉
|a j |2 +

∑
a j ∈C−|ψ〉

|a j |2 = 1.

(ii) Let |ψ〉 = ∑2n−1
j=0 a j ‖ j〉〉 and |ϕ〉 = ∑2n−1

j=0 b j ‖ j〉〉 be any two orthogonal

vectors of ⊗n
C

2 s.t. ‖|ψ〉 + |ϕ〉‖ ≤ 1 and ∀ j(0 ≤ j ≤ 2n − 1): a j b j =
0. Then

Prob(|ψ〉 + |ϕ〉) = Prob(|ψ〉) + Prob(|ϕ〉).

From an intuitive point of view, Prob(|ψ〉) represents “the probability” that
the quregister |ψ〉 (which is a superposition) “collapses” into a classical register
whose last element is 1.

The following theorem describes some interesting relations between the prob-
ability function Prob and our basic logical gates.

Theorem 3.3. Let |ψ〉 = ∑2n−1
j=0 a j ‖ j〉〉 and |ϕ〉 = ∑2m−1

k=0 bk ‖k〉〉 be two unit

vectors of ⊗n
C

2 (⊗m
C

2, respectively). The following properties hold

(i) Prob(AND(|ψ〉, |ϕ〉)) = Prob(|ψ〉)Prob(|ϕ〉);
(ii) Prob(NOT(|ψ〉)) = 1 − Prob(|ϕ〉);

(iii) Prob(OR(|ψ〉, ϕ)) = Prob(|ψ〉) + Prob(|ϕ〉) − Prob(|ψ〉)Prob(|ϕ〉;
(iv) Prob(

√
NOT(|ψ〉)) = ∑

j∈C+|ψ〉 | 1
2 (1 − i)a j−1 + 1

2 (1 + i)a j |2.

An Unsharp Logic From Quantum Computation 1813

(v) Prob(
√
NOT NOT(|ψ〉)) = Prob(NOT

√
NOT(|ψ〉)) = ∑

j∈C+|ψ〉 | 1
2 (1 + i)

a j−1 + 1
2 (1 − i)a j |2.

(vi) Prob(
√
NOT(AND(|ψ〉, |ϕ〉))) = 1

2 .

Condition (i) of Theorem 3 represents a quite unusual property for proba-
bilistic contexts: any pair of quregisters seems to behave here like a classical pair
of independent events (so that the probability of their conjunction is the product of
the probabilities of both members). At the same time, condition (ii) and (iii) appear
to be well behaved with respect to standard probability theory. As a consequence,
we obtain

• unlike classical and quantum probability, AND, OR, NOT have a “truth-
functional behavior” with respect to the function Prob: the probability of
the “whole” is determined by the probabilities of the parts.

• The gate
√
NOT is not truth-functional. It may happen at the same time

that: Prob(|ψ〉) = Prob(|ϕ〉) and Prob(
√
NOT(ψ)) �= Prob(

√
NOT(|ϕ〉)). For

example, let |ψ〉 :=
√

2
2 |0〉 +

√
2

2 |1〉 and |ϕ〉 :=
√

2
2 |0〉 +

√
2

2 (
√

2
2 +

√
2

2 i)|1〉.
Clearly, Prob(|ψ〉) = Prob(|ϕ〉) = 1

2 . However, Prob(
√
NOT(ψ)) = 1

2 and
Prob(

√
NOT(|ϕ〉)) = 1

2 − 1
2

√
2
.

As one can easily see, the operators NOT(1) and
√
NOT

(1)
have the same set of

fixed points. In other words, for any (unit) vector |ψ〉 ∈ C
2 : NOT(1)(|ψ〉) = |ψ〉

iff
√
NOT

(1)
(|ψ〉) = |ψ〉. Every vector of the form eiϑ√

2
(|0〉 + |1〉) turns out to be a

fixed point of NOT(1) and, accordingly, of
√
NOT

(1)
.

4. QUANTUM COMPUTATIONAL SEMANTICS

The starting point of the quantum computational semantics is quite different
from the standard quantum logical approach. The meanings of sentences are here
represented by quregisters. From an intuitive point of view, one can say that the
meaning of a sentence is identified with the information quantity encoded by the
sentence in question.

Consider a sentential languageLwith the following connectives: the negation
(¬), the conjunction (�), and the square root of the negation (

√¬). The notion of
sentence (or formula) of L is defined in the expected way. Let FormL represent the
set of all sentences of L. We will use the following metavariables: p, q, r, . . . for
atomic sentences and α, β, γ , . . . for sentences. The connective disjunction (�) is
supposed defined via de Morgan’s law:

α � β := ¬ (¬α � ¬β) .

We will now introduce the basic concept of our semantics, the notion of
quantum computational realization: an interpretation of the language L, such that

1814 Cattanco, Chiara, Giuntini, and Leporini

the meaning associated to any sentence is a quregister. As a consequence, the space
of the meanings corresponds here to a variable Hilbert space (instead of a unique
Hilbert space). Any space of this kind will be a product space ⊗n

C
2.

Definition 4.13. Quantum computational realization
A quantum computational realization of L is a function Qub associating to any
sentence α a quregister in a Hilbert space ⊗n

C
2 (where n depends on the linguistic

form of α):

Qub : FormL �
⋃

n

⊗n
C

2.

We will also write |α〉 instead of Qub(α); and we will call |α〉 the information-value
of α. The following conditions are required:

(i) |p〉 is a qubit;
(ii) Let |β〉 ∈ ⊗n

C
2. Then

|¬β〉 = NOT(|β〉) ∈ ⊗n
C

2;
(iii) Let |β〉 ∈ ⊗n

C
2, |γ 〉 ∈ ⊗m

C
2. Then:

|β � γ 〉 = AND(|β〉, |γ 〉) ∈ (⊗n
C

2) ⊗ (⊗m
C

2) ⊗ C
2;

(iv) Let |β〉 ∈ ⊗n
C

2. Then
|√¬β〉 = √

NOT(|β〉) ∈ ⊗n
C

2.

Our definition univocally determines, for any sentence α, the Hilbert space
⊗n

C
2 to which |α〉 belongs. Clearly, n is the number of all occurrences of atomic

sentences and of the connective � in α. Since the meaning associated to a given
sentence partially reflects the logical form of the sentence in question, we can say
that our semantics has a typical intensional character.

As we have seen, a characteristic of our semantics is to identify the mean-
ings of the linguistic sentences with unit vectors of variable Hilbert spaces. As
a consequence, we will obtain that the information-value of a sentence naturally
determines a probability-value for that sentence.

Let Qub be a quantum computational realization and let α be any sen-
tence with associated meaning |α〉. Like all quregisters, also this |α〉 will have a
probability-value, which (according to Definition 3.12.), is determined as follows:

Prob(|α)〉 :=
∑

a j ∈C+|α〉
|a j |2.

On this basis, one can naturally define the probability-value of any sentence
of our language:

Definition 4.14. The probability-value of α

Prob(α) :=
∑

a j ∈C+|α〉
|a j |2.

An Unsharp Logic From Quantum Computation 1815

As an example, let us first consider the simplest case, where α is an atomic
sentence; in this case, its information-value will belong to the two-dimensional
space C

2. Suppose, for instance, that |α〉 has the form

a0|0〉 + a1|1〉.
Then, the probability-value of α will be

Prob(α) = |a1|2.
Thus, Prob(α) = |a1|2 represents the probability that our uncertain informa-

tion |α〉 corresponds to the precise information |1〉.
From an intuitive point of view, our definition, clearly, attributes a privileged

role to one of the two basic qubits (belonging to the basis of C
2): the qubit |1〉. In

such a way, |1〉 is dealt with as the truth-value True.
Consider now the case of a molecular sentence α. Its information-value |α〉

will belong to the space ⊗n
C

2, where n (≥3) depends on the length of α. The
dimension of ⊗n

C
2 is 2n . Hence |α〉 will generally be a superposition of elements

of the basis of ⊗n
C

2. Thus, we will have

|α〉 =
2n−1∑
j=0

a j ‖ j〉〉,

where ‖ j〉〉 ranges over the basis of ⊗n
C

2.
From the logical point of view, any ‖ j〉〉 (element of the basis of ⊗n

C
2)

represents a possible case of a “reversibile truth-table” for α. For instance, suppose
α has the form p � q, where

|p〉 = a0|0〉 + a1|1〉, |q〉 = b0|0〉 + b1|1〉.
By applying the definitions of quantum computational realization and of OR, we
will obtain

|p � q〉 = a1b1|1, 1, 1〉 + a1b0|1, 0, 1〉 + a0b1|0, 1, 1〉 + a0b0|0, 0, 0〉.
We know that the number |a1b1|2 represents the probability that both the

members of our disjunction are true and that, consequently, the disjunction is true.
Similarly in the other cases. In order to calculate the probability of the truth of
p � q, it will be sufficient to sum the three probability-values corresponding to the
three cases where the final result is True (that is the cases of the vectors |1, 1, 1〉,
|1, 0, 1〉, |0, 1, 1〉). On this basis, we will be able to assign to the disjunction p � q
the following probability-value:

|a1b1|2 + |a1b0|2 + |a0b1|2.
We can now define the notions of truth, logical truth, consequence , and

logical consequence.

1816 Cattanco, Chiara, Giuntini, and Leporini

Definition 4.15. Truth and logical truth
A sentence α is true in a realization Qub (|=Qub α) iff Prob(α) = 1.
α is a logical truth (|= α) iff for any realization Qub, |=Qub α.

Definition 4.16. Consequence and logical consequence
β is a consequence of α in the realization Qub (α |=Qub β) iff Prob(α) ≤ Prob(β);
β is a logical conseguence of α (α |= β) iff for any Qub: α |=Qub β.

Let us call the logic characterized by this semantics quantum computational
logic (QCL).

Some interesting examples of logical consequences that hold in QCL are the
following:

Theorem 4.4.

(i) α |= ¬¬α, ¬¬α |= α;
(double negation)

(ii)
√¬√¬α |= ¬α, ¬α |= √¬√¬α;

(iii) α � β |= β � α, α � β |= β � α;
(commutativity)

(iv) α � (β � γ) |= (α � β) � γ , (α � β) � γ |= α � (β � γ);
(associativity)

(v) α � (β � γ) |= (α � β) � γ , (α � β) � γ |= α � (β � γ);
(associativity)

(vi) ¬(α � β) |= ¬α � ¬β, ¬α � ¬β |= ¬(α � β);
(de Morgan)

(vii) ¬(α � β) |= ¬α � ¬β, ¬α � ¬β |= ¬(α � β)
(de Morgan)

(viii) α � α |= α.
(semiidempotence 1)

(ix) α � (β � γ) |= (α � β) � (α � γ).
(distributivity 1)

Some logical consequences and some logical truths that are violated in QCL
are the following:

Theorem 4.5.

(i) α �|= α � α;
(semiidempotence 2)

(ii) �|= α � ¬α

(excluded middle)

An Unsharp Logic From Quantum Computation 1817

(iii) �|= ¬(α � ¬α);
(noncontradiction)

(iv) (α � β) ∨ (α � γ) �|= α � (β � γ).
(distributivity)

Proof: (i)–(iii) Take |α〉 :=
√

2
2 |0〉 +

√
2

2 |1〉. Then, Prob(α) = 1
2 , Prob(α � α) =

1
4 , Prob(α � ¬α) = Prob(¬(α � ¬α)) = 3

4 .

(iv) Take |α〉 = |β〉 :=
√

2
2 |0〉 +

√
2

2 |1〉 and |γ 〉 :=
√

3
2 |0〉 + 1

2 |1〉. Then Prob((α �
β) ∨ (α � γ)) = 11

32 > 10
32 = Prob(α � (β � γ)). �

QCL turns out to be a non standard form of quantum logic. Conjunction and
disjunction do not correspond to lattice operations, because they are not generally
idempotent. Unlike the usual (sharp and unsharp) quantum logics, the weak dis-
tributivity principle ((α � β) � (α � γ) |= α � (β � γ)) breaks down. At the same
time, the strong distributivity (α � (β � γ) |= (α � β) � (α � γ)), that is violated
in orthodox quantum logic, is here valid. Both the excluded middle and the noncon-
tradiction principles are violated: As a consequence, we have obtained an example
of an unsharp logic.

The axiomatizability of QCL is an open problem.

REFERENCES

Birkhoff, G. and von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics
37, 823–843.

Dalla Chiara, M. L. and Giuntini, R. (2002). Quantum logics. In Handbook of Philosophical Logic,
Vol. 6, G. Gabbay and F. Guenthner, eds., Kluwer, Dordrecht.

Deutsch, D., Ekert, A., and Lupacchini, R. (2000). Machines, logic and quantum physics. Bulletin of
Symbolic Logic 6(3), 265–283.

Preskill, J. (1999). Lecture Notes in Physics. In Quantum Information and Computation, Vol. 229,
Springer, Berlin.

Ekert, A., Hayden, P., and Inamori, H. (2001). Basic concepts in quantum computation. In Coeherent
Atomic Matter Waves Vol. LXXII of Nato Advanced Study Institute—Les Houches, R. Kaiser, C.
Westbrook, and F. David, eds., Springer-Verlag, Berlin.

Gudder, S. (2000). Quantum languages. In Current Research in Operational Quantum Logic, B. Coecke,
D. Moore, and A. Wilce, eds., Kluwer, Dordrecht.

Toffoli, T. (1980). Reversible computing. In Automata, Languages and Programming, Vol. 84, J. W. de
Baker, J. van Leeuwen, eds., Springer, Berlin.

